• Extension-contraction transformation network for pancreas segmentation in abdominal CT scans

    Yuxiang Zheng, Jianxu Luo

    Comput Biol Med . 2022 Dec 5;152:106410. doi: 10.1016/j.compbiomed.2022.106410. Online ahead of print.

    Abstract

    Accurate and automatic pancreas segmentation from abdominal computed tomography (CT) scans is crucial for the diagnosis and prognosis of pancreatic diseases. However, the pancreas accounts for a relatively small portion of the scan and presents high anatomical variability and low contrast, making traditional automated segmentation methods fail to generate satisfactory results. In this paper, we propose an extension-contraction transformation network (ECTN) and deploy it into a cascaded two-stage segmentation framework for accurate pancreas segmenting. This model can enhance the perception of 3D context by distinguishing and exploiting the extension and contraction transformation of the pancreas between slices. It consists of an encoder, a segmentation decoder, and an extension-contraction (EC) decoder. The EC decoder is responsible for predicting the inter-slice extension and contraction transformation of the pancreas by feeding the extension and contraction information generated by the segmentation decoder; meanwhile, its output is combined with the output of the segmentation decoder to reconstruct and refine the segmentation results. Quantitative evaluation is performed on NIH Pancreas Segmentation (Pancreas-CT) dataset using 4-fold cross-validation. We obtained average Precision of 86.59±6.14% , Recall of 85.11±5.96%, Dice similarity coefficient (DSC) of 85.58±3.98%. and Jaccard Index (JI) of 74.99±5.86%. The performance of our method outperforms several baseline and state-of-the-art methods.