Jun Liu, Huanhua Wu, Dabin Ren, Hao Huang, Xinyue Chen, Liqiu Liu, Yongtao Wang, Guoyu Wang
Abdom Radiol (NY) . 2025 Apr 3. doi: 10.1007/s00261-025-04921-z. Online ahead of print.
Background: This study aimed to preoperatively predict Ki-67 proliferation levels in patients with pancreatic solid pseudopapillary neoplasm (pSPN) using radiomics features extracted from arterial phase helical CT images.
Methods: We retrospectively analyzed 92 patients (Ningbo Medical Center Lihuili Hospital: n = 64, Taizhou Central Hospital: n = 28) with pathologically confirmed pSPN from June 2015 to June 2023. Ki-67 positivity > 3% was considered high. Radiomics features were extracted using PyRadiomics, with patients from training cohort (n = 64) and validation cohort (n = 28). A radiomics signature was constructed, and a CT radiomics score (CTscore) was calculated. Deep learning models were employed for prediction, with early stopping to prevent overfitting.
Results: Seven key radiomics features were selected via LASSO regression with cross-validation. The deep learning model demonstrated improved accuracy with demographics and CTscore, with key features such as Morphology and CTscore contributing significantly to predictive accuracy. The best-performing models, including GBM and deep learning algorithms, achieved high predictive performance with an AUC of up to 0.946 in the training cohort.
Conclusions: We developed a robust deep learning-based radiomics model using arterial phase CT images to predict Ki-67 levels in pSPN patients, identifying CTscore and Morphology as key predictors. This non-invasive approach has potential utility in guiding personalized preoperative treatment strategies.